VOC reduction of lignin containing materials

Improvement of strength properties and reduction of emission of volatile organic compounds by enzymatic modification of lignin containing biopolymers and composites
Acronym: VOC reduction of lignin containing materials

Project coordinator

- Prof. Christian Wilhelm – Saxon Institute for Applied Biotechnology - Germany 

Project leaders

- Dr. Maite Moreira - University of Santiago de Compostela – Spain

- Dr. Michel Penninckx – Université libre de Bruxelles – Belgium

- Dr.-ing. Wolfgang Nendel– Chemnitz University of Technology – Germany

- Dr.-ing. Alexander Pfriem – Technische Universität Dresden – Germany

- Prof. Ewa Dobrowolska – Warsaw University of Life Sciences – Poland

- Dr. Tarja Tamminen – VTT Technical Research Centre – Finland

Abstract

The project concerns the development of biopolymers from lignin materials. Bio-composite material of engineering grade from residual lignin was developed a few years ago. The material combines the physical properties of solid wood and plastics in the manufacture process. However, the high emission rate of volatile organic compounds (VOC) and unfavourable odour characteristics prevent the material from being used for several value added products.

The main sources for these emissions are low molecular parts of lignin and hemicellulose. The emissions contain monoterpenes, sesquiterpenes, phenols, aliphatic alcohols and aldehydes. It became obvious that the odour characteristics of the material are very important for the application. The aim of the project is to develop enzyme complexes for the efficient degradation or polymerisation of lignin- and hemicellulose-based compounds, which are responsible for emissions of volatile organic compounds (VOC). For this purpose, enzymes with a specific spectrum of hemicellulases or lignin-oxidising activities will be developed and produced. Incubation procedures of lignin and lignocellulose fibres will be developed and optimised. Investigations on the mechanism of the enzymatic catalysed degradation and modification of the lignin and lignocellulose fibres will be carried out.

Injection moulding processes with modified materials and improved conditions will be run and optimised. Using enzymatic incubated lignin and short lignocellulosic fibres as raw materials, a fibre-reinforced biopolymer composite with reduced emission and improved physical properties will be developed from laboratory up to pilot scale. In addition to the development of specific enzyme complexes, the enzymatic modification mechanisms will be understood and used for the optimisation of the incubation process. New fibre-reinforced biopolymer with reduced VOC emission and improved physical properties will be used for the production of commercial composite products in cooperation with industrial partners.

The successful realisation of the project opens new value added applications for the by-product residual lignin and lignocellulose fibres. The scientific results will be used for patent application, published in scientific and technical journals, presented at scientific conferences and at international fairs and be taught at the participating universities. Several industrial partners from different industrial fields will be integrated in the project work.