In vivo cascades for sustainable access to monomers of high volume polymers
Project acronym: PolyBugs

- Katja Bühler, Helmholtz Center for Environmental Research (UFZ), Germany / Saxony
- Eivind Almaas, Norwegian University of Science and Technology – NTNU, Norway
- Joaquim Cabral, Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento (IST-ID), Portugal
- Mieke Klein, ifu Hamburg GmbH, Germany
- Steffen Schaffer, Evonik Creavis GmbH, Germany

Polymers have become increasingly important to our every day lives and contribute significantly to value generation in our economies, with examples of application of polymers ranging from high end applications in cars, planes, or medical equipment to items of daily use. Polymers have a vast application spectrum and are needed on multiple mega ton scales. Polymer building blocks like adipic acid or Ԑ-caprolactam have a couple of critical environmental issues connected to their production processes, such as generation of nitrous oxide waste and large amounts of salts and high energy consumption. Thus, there is a pressing demand for the development of ecoefficient and sustainable alternative production routes for such compounds. Nonetheless, all “bio”-inspired routes are commonly tailored for one single compound; a hurdle biotechnological developments very often feature.

Our project faces the challenge of developing a platform organism for the production of precursors for the high end polymer nylon 6 and other polymers. This task is based on enzymes derived from a novel strain which was isolated based on its capability to mineralize cycloalkanes (C5–C8) using these as sole sources of carbon and energy. Taking advantage of the highly active cyclohexane degrading enzymes of the respective degradation pathway this research program will develop a solvent tolerant, biofilm forming Pseudomonas strain towards a true platform organism for the synthesis of various polymer building blocks starting from cyclohexane. This concept will combine heterologous and native genes. Key products will be Ԑ-caprolactone, 6-aminohexanoic acid, and adipic acid. Looking at the complete process development chain in terms of biocatalyst understanding and design, reaction and reactor engineering in an integrating and iterative manner, focusing on one host for multiple products, and accompanying this work with an eco-efficiency balance represent the key-characteristics of this work program.